Is the integer number 400 divisible by 16?

Is 400 divisible by 16?
Two methods used below: Approach 1. Dividing numbers. Approach 2. Integer numbers prime factorization.

Approach 1. Dividing numbers:

One integer A is divisible by another integer B,
if after dividing them, A ÷ B, the remainder is zero.


400 is divisible by 16, if there is an integer 'n' such that 400 = 'n' × 16.


Notice that dividing our numbers leaves no remainder:


400 ÷ 16 = 25 + 0;


So, 400 = 25 × 16;


=> 400 is divisible by 16.


16 is called a divisor (a factor) of 400.


16 | 400


The shorthand notation A | B means A divides B.


400 is a multiple of 16.


Note that this is also the first step of the Euclidean Algorithm, where the division of the numbers stops when a remainder equal to zero is reported.


400 is divisible by 16:
16 | 400

Approach 2. Integer numbers prime factorization:

Prime Factorization of a number: finding the prime numbers that multiply together to make that number.


400 = 24 × 52;
400 is not a prime, is a composite number;


16 = 24;
16 is not a prime, is a composite number;


* Positive integers that are only dividing by themselves and 1 are called prime numbers. A prime number has only two factors: 1 and itself.
* A composite number is a positive integer that has at least one factor (divisor) other than 1 and itself.


400 has all the prime factors of the number 16;


So, 400 is divisible by 16:


16 | 400


The shorthand notation A | B means A divides B;


16 is called a divisor (a factor) of 400;


400 is a multiple of 16.

400 is divisible by 16:
16 | 400

Final answer:
400 is divisible by 16:
16 | 400.
Dividing our numbers leaves no remainder
400 has all the prime factors of the number 16.
16 is a factor (a divisor) of 400.
400 is a multiple of 16.

More operations of this kind:

Online calculator: numbers' divisibility check

The latest numbers that were checked to see whether they are divisible or not

Is number 400 divisible by number 16? Jan 21 07:12 UTC (GMT)
Is number 1,972 divisible by number 237? Jan 21 07:12 UTC (GMT)
Is number 39,962 divisible by number 13? Jan 21 07:12 UTC (GMT)
Is number 639,210 divisible by number 2? Jan 21 07:12 UTC (GMT)
Is number 906 divisible by number 126? Jan 21 07:12 UTC (GMT)
Is number 14,768 divisible by number 2,605? Jan 21 07:12 UTC (GMT)
Is number 54,772 divisible by number 9,247? Jan 21 07:12 UTC (GMT)
Is number 17,400 divisible by number 4? Jan 21 07:12 UTC (GMT)
Is number 92 divisible by number 43? Jan 21 07:12 UTC (GMT)
Is number 277 divisible by number 46? Jan 21 07:12 UTC (GMT)
Is number 678 divisible by number 301? Jan 21 07:12 UTC (GMT)
Is number 789,421 divisible by number 114,014? Jan 21 07:12 UTC (GMT)
Is number 5 divisible by number 34,615? Jan 21 07:12 UTC (GMT)
integer numbers divisibility, see more...

Tutoring: What is the integer numbers divisibility? Divisibility rules.

Divisibility of integer numbers

Let's divide two different numbers, 12 and 15, by 4. When we divide 12 by 4, the quotient is 3 and the operation leaves no remainder. But when we divide 15 by 4, the quotient is 3 and the operation leaves a remainder of 3. We say that the number 12 is divisible by 4 and 15 is not. We also say that 4 is a divisor of 12, but is not a divisor of 15.

In general, we say that "a" is divisible by "b", if there is an integer number "n", so that: a = n × b. Number "b" is called the divisor of "a" ("n" is also a divisor of "a").

0 is divisible by any number other than zero itself.

Any number "a", different of zero, is divisible at least by 1 and itself, which are called improper divisors.

Some divisibility rules

The number 84 is divisible by 4 and 3 and is also divisible by 4 × 3 = 12. This is not true unless the two divisors are coprime.

In general, if "a" is divisible by both "m" and "n" and greatest common factor (m; n) = 1 (coprime numbers), then "a" it is also divisible by their product, (m × n).

Calculating divisors (factors) is very useful when simplifying fractions (reducing fractions to lower terms). The established rules for finding factors (divisors) are based on the fact that the numbers are written in the decimal system. Mutiples of 10 are divisible by 2 and 5, because 10 is divisible by 2 and 5; multiples of 100 are divisible by 4 and 25, because 100 is divisible by 4 and 25; multiples of 1000 are divisible by 8, because 1000 is divisible with 8. All the powers of 10, when divided by 3, or 9, have a remainder equal to 1.

Due to the rules of operation with remainders, we have the following remainders when dividing numbers by 3 or 9: 600 leaves a remainder equal to 6 = 1 × 6; 240 = 2 × 100 + 4 × 10, then the remainder will be equal to 2 × 1 + 4 × 1 = 6. On dividing a number by 3 or 9 the remainder will be equal to that left from dividing the sum of digits of that number by 3 or 9; 7,309 has the sum of the numbers 7 + 3 + 0 + 9 = 19, which is divided without a remainder to neither 3 nor 9. So 7,309 is not divisible by 3 or 9.

All even powers of 10, 100, 10,000, 1,000,000, etc., when divided by 11 left a remainder of 1, and the odd powers of 10, when divided by 11 left a remainder equal to 10 or 10 - 11 = -1. In this case, the alternating sum of the digits bears the same remainder as when dividing by 11, as if the whole number were being divided by 11. How to calculate the alternating sum is shown in the example below.

For instance, for the number: 85,976: 8 + 9 + 6 = 23, 5 + 7 = 12, the alternating sum of the digits: 23 - 12 = 11. So 85,976 is divisible by 11.

A number is divisible by:
  • 2 if the last digit is divisible by 2
  • 4 if the last two digits form a number divisible by 4;
  • 8, if the last three digits form a number divisible by 8;
  • 5 if the last digit is divisible by 5 (5 and 0)
  • 25, if the last two digits form a number divisible by 25
  • 3, if the sum of digits is divisible by 3;
  • 9, if the sum of digits is divisible by 9;
  • 11 if the alternating sum of digits is divisible by 11.

What is a prime number?

What is a composite number?

Prime numbers up to 1,000

Prime numbers up to 10,000

Sieve of Eratosthenes

Euclid's algorithm

Simplifying ordinary (common) math fractions (reducing to lower terms): steps to follow and examples