Given the Number 72,972,900 Calculate (Find) All Its Factors (Divisors – the Proper, the Improper and the Prime Factors). Online Calculator

All the factors (divisors) of the number 72,972,900

1. Carry out the prime factorization of the number 72,972,900:

The prime factorization of a number: finding the prime numbers that multiply together to make that number.


72,972,900 = 22 × 36 × 52 × 7 × 11 × 13
72,972,900 is not a prime number but a composite one.


* Prime number: a natural number that is divisible (divided evenly) only by 1 and itself. A prime number has exactly two factors: 1 and the number itself.
* Composite number: a natural number that has at least one other factor than 1 and itself.


2. Multiply the prime factors of the number 72,972,900

Multiply the prime factors involved in the prime factorization of the number in all their unique combinations, that give different results.


Also consider the exponents of these prime factors.

Also add 1 to the list of factors (divisors). All the numbers are divisible by 1.


All the factors (divisors) are listed below - in ascending order

The list of factors (divisors):

neither prime nor composite = 1
prime factor = 2
prime factor = 3
22 = 4
prime factor = 5
2 × 3 = 6
prime factor = 7
32 = 9
2 × 5 = 10
prime factor = 11
22 × 3 = 12
prime factor = 13
2 × 7 = 14
3 × 5 = 15
2 × 32 = 18
22 × 5 = 20
3 × 7 = 21
2 × 11 = 22
52 = 25
2 × 13 = 26
33 = 27
22 × 7 = 28
2 × 3 × 5 = 30
3 × 11 = 33
5 × 7 = 35
22 × 32 = 36
3 × 13 = 39
2 × 3 × 7 = 42
22 × 11 = 44
32 × 5 = 45
2 × 52 = 50
22 × 13 = 52
2 × 33 = 54
5 × 11 = 55
22 × 3 × 5 = 60
32 × 7 = 63
5 × 13 = 65
2 × 3 × 11 = 66
2 × 5 × 7 = 70
3 × 52 = 75
7 × 11 = 77
2 × 3 × 13 = 78
34 = 81
22 × 3 × 7 = 84
2 × 32 × 5 = 90
7 × 13 = 91
32 × 11 = 99
22 × 52 = 100
3 × 5 × 7 = 105
22 × 33 = 108
2 × 5 × 11 = 110
32 × 13 = 117
2 × 32 × 7 = 126
2 × 5 × 13 = 130
22 × 3 × 11 = 132
33 × 5 = 135
22 × 5 × 7 = 140
11 × 13 = 143
2 × 3 × 52 = 150
2 × 7 × 11 = 154
22 × 3 × 13 = 156
2 × 34 = 162
3 × 5 × 11 = 165
52 × 7 = 175
22 × 32 × 5 = 180
2 × 7 × 13 = 182
33 × 7 = 189
3 × 5 × 13 = 195
2 × 32 × 11 = 198
2 × 3 × 5 × 7 = 210
22 × 5 × 11 = 220
32 × 52 = 225
3 × 7 × 11 = 231
2 × 32 × 13 = 234
35 = 243
22 × 32 × 7 = 252
22 × 5 × 13 = 260
2 × 33 × 5 = 270
3 × 7 × 13 = 273
52 × 11 = 275
2 × 11 × 13 = 286
33 × 11 = 297
22 × 3 × 52 = 300
22 × 7 × 11 = 308
32 × 5 × 7 = 315
22 × 34 = 324
52 × 13 = 325
2 × 3 × 5 × 11 = 330
2 × 52 × 7 = 350
33 × 13 = 351
22 × 7 × 13 = 364
2 × 33 × 7 = 378
5 × 7 × 11 = 385
2 × 3 × 5 × 13 = 390
22 × 32 × 11 = 396
34 × 5 = 405
22 × 3 × 5 × 7 = 420
3 × 11 × 13 = 429
2 × 32 × 52 = 450
5 × 7 × 13 = 455
2 × 3 × 7 × 11 = 462
22 × 32 × 13 = 468
2 × 35 = 486
32 × 5 × 11 = 495
3 × 52 × 7 = 525
22 × 33 × 5 = 540
2 × 3 × 7 × 13 = 546
2 × 52 × 11 = 550
34 × 7 = 567
22 × 11 × 13 = 572
32 × 5 × 13 = 585
2 × 33 × 11 = 594
2 × 32 × 5 × 7 = 630
2 × 52 × 13 = 650
22 × 3 × 5 × 11 = 660
33 × 52 = 675
32 × 7 × 11 = 693
22 × 52 × 7 = 700
2 × 33 × 13 = 702
5 × 11 × 13 = 715
36 = 729
22 × 33 × 7 = 756
2 × 5 × 7 × 11 = 770
22 × 3 × 5 × 13 = 780
2 × 34 × 5 = 810
32 × 7 × 13 = 819
3 × 52 × 11 = 825
2 × 3 × 11 × 13 = 858
34 × 11 = 891
22 × 32 × 52 = 900
2 × 5 × 7 × 13 = 910
22 × 3 × 7 × 11 = 924
33 × 5 × 7 = 945
22 × 35 = 972
3 × 52 × 13 = 975
2 × 32 × 5 × 11 = 990
7 × 11 × 13 = 1,001
2 × 3 × 52 × 7 = 1,050
34 × 13 = 1,053
22 × 3 × 7 × 13 = 1,092
22 × 52 × 11 = 1,100
2 × 34 × 7 = 1,134
3 × 5 × 7 × 11 = 1,155
2 × 32 × 5 × 13 = 1,170
22 × 33 × 11 = 1,188
35 × 5 = 1,215
22 × 32 × 5 × 7 = 1,260
32 × 11 × 13 = 1,287
22 × 52 × 13 = 1,300
2 × 33 × 52 = 1,350
3 × 5 × 7 × 13 = 1,365
2 × 32 × 7 × 11 = 1,386
22 × 33 × 13 = 1,404
2 × 5 × 11 × 13 = 1,430
2 × 36 = 1,458
33 × 5 × 11 = 1,485
22 × 5 × 7 × 11 = 1,540
32 × 52 × 7 = 1,575
22 × 34 × 5 = 1,620
2 × 32 × 7 × 13 = 1,638
2 × 3 × 52 × 11 = 1,650
35 × 7 = 1,701
22 × 3 × 11 × 13 = 1,716
33 × 5 × 13 = 1,755
2 × 34 × 11 = 1,782
22 × 5 × 7 × 13 = 1,820
2 × 33 × 5 × 7 = 1,890
52 × 7 × 11 = 1,925
2 × 3 × 52 × 13 = 1,950
22 × 32 × 5 × 11 = 1,980
2 × 7 × 11 × 13 = 2,002
34 × 52 = 2,025
33 × 7 × 11 = 2,079
22 × 3 × 52 × 7 = 2,100
2 × 34 × 13 = 2,106
3 × 5 × 11 × 13 = 2,145
22 × 34 × 7 = 2,268
52 × 7 × 13 = 2,275
2 × 3 × 5 × 7 × 11 = 2,310
22 × 32 × 5 × 13 = 2,340
2 × 35 × 5 = 2,430
33 × 7 × 13 = 2,457
32 × 52 × 11 = 2,475
2 × 32 × 11 × 13 = 2,574
35 × 11 = 2,673
22 × 33 × 52 = 2,700
2 × 3 × 5 × 7 × 13 = 2,730
22 × 32 × 7 × 11 = 2,772
34 × 5 × 7 = 2,835
22 × 5 × 11 × 13 = 2,860
22 × 36 = 2,916
32 × 52 × 13 = 2,925
2 × 33 × 5 × 11 = 2,970
3 × 7 × 11 × 13 = 3,003
2 × 32 × 52 × 7 = 3,150
35 × 13 = 3,159
22 × 32 × 7 × 13 = 3,276
22 × 3 × 52 × 11 = 3,300
2 × 35 × 7 = 3,402
32 × 5 × 7 × 11 = 3,465
2 × 33 × 5 × 13 = 3,510
22 × 34 × 11 = 3,564
52 × 11 × 13 = 3,575
36 × 5 = 3,645
22 × 33 × 5 × 7 = 3,780
2 × 52 × 7 × 11 = 3,850
33 × 11 × 13 = 3,861
22 × 3 × 52 × 13 = 3,900
22 × 7 × 11 × 13 = 4,004
2 × 34 × 52 = 4,050
32 × 5 × 7 × 13 = 4,095
2 × 33 × 7 × 11 = 4,158
22 × 34 × 13 = 4,212
2 × 3 × 5 × 11 × 13 = 4,290
34 × 5 × 11 = 4,455
2 × 52 × 7 × 13 = 4,550
22 × 3 × 5 × 7 × 11 = 4,620
33 × 52 × 7 = 4,725
22 × 35 × 5 = 4,860
2 × 33 × 7 × 13 = 4,914
2 × 32 × 52 × 11 = 4,950
5 × 7 × 11 × 13 = 5,005
36 × 7 = 5,103
22 × 32 × 11 × 13 = 5,148
34 × 5 × 13 = 5,265
2 × 35 × 11 = 5,346
22 × 3 × 5 × 7 × 13 = 5,460
2 × 34 × 5 × 7 = 5,670
3 × 52 × 7 × 11 = 5,775
2 × 32 × 52 × 13 = 5,850
22 × 33 × 5 × 11 = 5,940
2 × 3 × 7 × 11 × 13 = 6,006
35 × 52 = 6,075
34 × 7 × 11 = 6,237
22 × 32 × 52 × 7 = 6,300
2 × 35 × 13 = 6,318
32 × 5 × 11 × 13 = 6,435
22 × 35 × 7 = 6,804
3 × 52 × 7 × 13 = 6,825
2 × 32 × 5 × 7 × 11 = 6,930
22 × 33 × 5 × 13 = 7,020
2 × 52 × 11 × 13 = 7,150
2 × 36 × 5 = 7,290
34 × 7 × 13 = 7,371
33 × 52 × 11 = 7,425
22 × 52 × 7 × 11 = 7,700
2 × 33 × 11 × 13 = 7,722
36 × 11 = 8,019
22 × 34 × 52 = 8,100
2 × 32 × 5 × 7 × 13 = 8,190
22 × 33 × 7 × 11 = 8,316
35 × 5 × 7 = 8,505
This list continues below...

... This list continues from above
22 × 3 × 5 × 11 × 13 = 8,580
33 × 52 × 13 = 8,775
2 × 34 × 5 × 11 = 8,910
32 × 7 × 11 × 13 = 9,009
22 × 52 × 7 × 13 = 9,100
2 × 33 × 52 × 7 = 9,450
36 × 13 = 9,477
22 × 33 × 7 × 13 = 9,828
22 × 32 × 52 × 11 = 9,900
2 × 5 × 7 × 11 × 13 = 10,010
2 × 36 × 7 = 10,206
33 × 5 × 7 × 11 = 10,395
2 × 34 × 5 × 13 = 10,530
22 × 35 × 11 = 10,692
3 × 52 × 11 × 13 = 10,725
22 × 34 × 5 × 7 = 11,340
2 × 3 × 52 × 7 × 11 = 11,550
34 × 11 × 13 = 11,583
22 × 32 × 52 × 13 = 11,700
22 × 3 × 7 × 11 × 13 = 12,012
2 × 35 × 52 = 12,150
33 × 5 × 7 × 13 = 12,285
2 × 34 × 7 × 11 = 12,474
22 × 35 × 13 = 12,636
2 × 32 × 5 × 11 × 13 = 12,870
35 × 5 × 11 = 13,365
2 × 3 × 52 × 7 × 13 = 13,650
22 × 32 × 5 × 7 × 11 = 13,860
34 × 52 × 7 = 14,175
22 × 52 × 11 × 13 = 14,300
22 × 36 × 5 = 14,580
2 × 34 × 7 × 13 = 14,742
2 × 33 × 52 × 11 = 14,850
3 × 5 × 7 × 11 × 13 = 15,015
22 × 33 × 11 × 13 = 15,444
35 × 5 × 13 = 15,795
2 × 36 × 11 = 16,038
22 × 32 × 5 × 7 × 13 = 16,380
2 × 35 × 5 × 7 = 17,010
32 × 52 × 7 × 11 = 17,325
2 × 33 × 52 × 13 = 17,550
22 × 34 × 5 × 11 = 17,820
2 × 32 × 7 × 11 × 13 = 18,018
36 × 52 = 18,225
35 × 7 × 11 = 18,711
22 × 33 × 52 × 7 = 18,900
2 × 36 × 13 = 18,954
33 × 5 × 11 × 13 = 19,305
22 × 5 × 7 × 11 × 13 = 20,020
22 × 36 × 7 = 20,412
32 × 52 × 7 × 13 = 20,475
2 × 33 × 5 × 7 × 11 = 20,790
22 × 34 × 5 × 13 = 21,060
2 × 3 × 52 × 11 × 13 = 21,450
35 × 7 × 13 = 22,113
34 × 52 × 11 = 22,275
22 × 3 × 52 × 7 × 11 = 23,100
2 × 34 × 11 × 13 = 23,166
22 × 35 × 52 = 24,300
2 × 33 × 5 × 7 × 13 = 24,570
22 × 34 × 7 × 11 = 24,948
52 × 7 × 11 × 13 = 25,025
36 × 5 × 7 = 25,515
22 × 32 × 5 × 11 × 13 = 25,740
34 × 52 × 13 = 26,325
2 × 35 × 5 × 11 = 26,730
33 × 7 × 11 × 13 = 27,027
22 × 3 × 52 × 7 × 13 = 27,300
2 × 34 × 52 × 7 = 28,350
22 × 34 × 7 × 13 = 29,484
22 × 33 × 52 × 11 = 29,700
2 × 3 × 5 × 7 × 11 × 13 = 30,030
34 × 5 × 7 × 11 = 31,185
2 × 35 × 5 × 13 = 31,590
22 × 36 × 11 = 32,076
32 × 52 × 11 × 13 = 32,175
22 × 35 × 5 × 7 = 34,020
2 × 32 × 52 × 7 × 11 = 34,650
35 × 11 × 13 = 34,749
22 × 33 × 52 × 13 = 35,100
22 × 32 × 7 × 11 × 13 = 36,036
2 × 36 × 52 = 36,450
34 × 5 × 7 × 13 = 36,855
2 × 35 × 7 × 11 = 37,422
22 × 36 × 13 = 37,908
2 × 33 × 5 × 11 × 13 = 38,610
36 × 5 × 11 = 40,095
2 × 32 × 52 × 7 × 13 = 40,950
22 × 33 × 5 × 7 × 11 = 41,580
35 × 52 × 7 = 42,525
22 × 3 × 52 × 11 × 13 = 42,900
2 × 35 × 7 × 13 = 44,226
2 × 34 × 52 × 11 = 44,550
32 × 5 × 7 × 11 × 13 = 45,045
22 × 34 × 11 × 13 = 46,332
36 × 5 × 13 = 47,385
22 × 33 × 5 × 7 × 13 = 49,140
2 × 52 × 7 × 11 × 13 = 50,050
2 × 36 × 5 × 7 = 51,030
33 × 52 × 7 × 11 = 51,975
2 × 34 × 52 × 13 = 52,650
22 × 35 × 5 × 11 = 53,460
2 × 33 × 7 × 11 × 13 = 54,054
36 × 7 × 11 = 56,133
22 × 34 × 52 × 7 = 56,700
34 × 5 × 11 × 13 = 57,915
22 × 3 × 5 × 7 × 11 × 13 = 60,060
33 × 52 × 7 × 13 = 61,425
2 × 34 × 5 × 7 × 11 = 62,370
22 × 35 × 5 × 13 = 63,180
2 × 32 × 52 × 11 × 13 = 64,350
36 × 7 × 13 = 66,339
35 × 52 × 11 = 66,825
22 × 32 × 52 × 7 × 11 = 69,300
2 × 35 × 11 × 13 = 69,498
22 × 36 × 52 = 72,900
2 × 34 × 5 × 7 × 13 = 73,710
22 × 35 × 7 × 11 = 74,844
3 × 52 × 7 × 11 × 13 = 75,075
22 × 33 × 5 × 11 × 13 = 77,220
35 × 52 × 13 = 78,975
2 × 36 × 5 × 11 = 80,190
34 × 7 × 11 × 13 = 81,081
22 × 32 × 52 × 7 × 13 = 81,900
2 × 35 × 52 × 7 = 85,050
22 × 35 × 7 × 13 = 88,452
22 × 34 × 52 × 11 = 89,100
2 × 32 × 5 × 7 × 11 × 13 = 90,090
35 × 5 × 7 × 11 = 93,555
2 × 36 × 5 × 13 = 94,770
33 × 52 × 11 × 13 = 96,525
22 × 52 × 7 × 11 × 13 = 100,100
22 × 36 × 5 × 7 = 102,060
2 × 33 × 52 × 7 × 11 = 103,950
36 × 11 × 13 = 104,247
22 × 34 × 52 × 13 = 105,300
22 × 33 × 7 × 11 × 13 = 108,108
35 × 5 × 7 × 13 = 110,565
2 × 36 × 7 × 11 = 112,266
2 × 34 × 5 × 11 × 13 = 115,830
2 × 33 × 52 × 7 × 13 = 122,850
22 × 34 × 5 × 7 × 11 = 124,740
36 × 52 × 7 = 127,575
22 × 32 × 52 × 11 × 13 = 128,700
2 × 36 × 7 × 13 = 132,678
2 × 35 × 52 × 11 = 133,650
33 × 5 × 7 × 11 × 13 = 135,135
22 × 35 × 11 × 13 = 138,996
22 × 34 × 5 × 7 × 13 = 147,420
2 × 3 × 52 × 7 × 11 × 13 = 150,150
34 × 52 × 7 × 11 = 155,925
2 × 35 × 52 × 13 = 157,950
22 × 36 × 5 × 11 = 160,380
2 × 34 × 7 × 11 × 13 = 162,162
22 × 35 × 52 × 7 = 170,100
35 × 5 × 11 × 13 = 173,745
22 × 32 × 5 × 7 × 11 × 13 = 180,180
34 × 52 × 7 × 13 = 184,275
2 × 35 × 5 × 7 × 11 = 187,110
22 × 36 × 5 × 13 = 189,540
2 × 33 × 52 × 11 × 13 = 193,050
36 × 52 × 11 = 200,475
22 × 33 × 52 × 7 × 11 = 207,900
2 × 36 × 11 × 13 = 208,494
2 × 35 × 5 × 7 × 13 = 221,130
22 × 36 × 7 × 11 = 224,532
32 × 52 × 7 × 11 × 13 = 225,225
22 × 34 × 5 × 11 × 13 = 231,660
36 × 52 × 13 = 236,925
35 × 7 × 11 × 13 = 243,243
22 × 33 × 52 × 7 × 13 = 245,700
2 × 36 × 52 × 7 = 255,150
22 × 36 × 7 × 13 = 265,356
22 × 35 × 52 × 11 = 267,300
2 × 33 × 5 × 7 × 11 × 13 = 270,270
36 × 5 × 7 × 11 = 280,665
34 × 52 × 11 × 13 = 289,575
22 × 3 × 52 × 7 × 11 × 13 = 300,300
2 × 34 × 52 × 7 × 11 = 311,850
22 × 35 × 52 × 13 = 315,900
22 × 34 × 7 × 11 × 13 = 324,324
36 × 5 × 7 × 13 = 331,695
2 × 35 × 5 × 11 × 13 = 347,490
2 × 34 × 52 × 7 × 13 = 368,550
22 × 35 × 5 × 7 × 11 = 374,220
22 × 33 × 52 × 11 × 13 = 386,100
2 × 36 × 52 × 11 = 400,950
34 × 5 × 7 × 11 × 13 = 405,405
22 × 36 × 11 × 13 = 416,988
22 × 35 × 5 × 7 × 13 = 442,260
2 × 32 × 52 × 7 × 11 × 13 = 450,450
35 × 52 × 7 × 11 = 467,775
2 × 36 × 52 × 13 = 473,850
2 × 35 × 7 × 11 × 13 = 486,486
22 × 36 × 52 × 7 = 510,300
36 × 5 × 11 × 13 = 521,235
22 × 33 × 5 × 7 × 11 × 13 = 540,540
35 × 52 × 7 × 13 = 552,825
2 × 36 × 5 × 7 × 11 = 561,330
2 × 34 × 52 × 11 × 13 = 579,150
22 × 34 × 52 × 7 × 11 = 623,700
2 × 36 × 5 × 7 × 13 = 663,390
33 × 52 × 7 × 11 × 13 = 675,675
22 × 35 × 5 × 11 × 13 = 694,980
36 × 7 × 11 × 13 = 729,729
22 × 34 × 52 × 7 × 13 = 737,100
22 × 36 × 52 × 11 = 801,900
2 × 34 × 5 × 7 × 11 × 13 = 810,810
35 × 52 × 11 × 13 = 868,725
22 × 32 × 52 × 7 × 11 × 13 = 900,900
2 × 35 × 52 × 7 × 11 = 935,550
22 × 36 × 52 × 13 = 947,700
22 × 35 × 7 × 11 × 13 = 972,972
2 × 36 × 5 × 11 × 13 = 1,042,470
2 × 35 × 52 × 7 × 13 = 1,105,650
22 × 36 × 5 × 7 × 11 = 1,122,660
22 × 34 × 52 × 11 × 13 = 1,158,300
35 × 5 × 7 × 11 × 13 = 1,216,215
22 × 36 × 5 × 7 × 13 = 1,326,780
2 × 33 × 52 × 7 × 11 × 13 = 1,351,350
36 × 52 × 7 × 11 = 1,403,325
2 × 36 × 7 × 11 × 13 = 1,459,458
22 × 34 × 5 × 7 × 11 × 13 = 1,621,620
36 × 52 × 7 × 13 = 1,658,475
2 × 35 × 52 × 11 × 13 = 1,737,450
22 × 35 × 52 × 7 × 11 = 1,871,100
34 × 52 × 7 × 11 × 13 = 2,027,025
22 × 36 × 5 × 11 × 13 = 2,084,940
22 × 35 × 52 × 7 × 13 = 2,211,300
2 × 35 × 5 × 7 × 11 × 13 = 2,432,430
36 × 52 × 11 × 13 = 2,606,175
22 × 33 × 52 × 7 × 11 × 13 = 2,702,700
2 × 36 × 52 × 7 × 11 = 2,806,650
22 × 36 × 7 × 11 × 13 = 2,918,916
2 × 36 × 52 × 7 × 13 = 3,316,950
22 × 35 × 52 × 11 × 13 = 3,474,900
36 × 5 × 7 × 11 × 13 = 3,648,645
2 × 34 × 52 × 7 × 11 × 13 = 4,054,050
22 × 35 × 5 × 7 × 11 × 13 = 4,864,860
2 × 36 × 52 × 11 × 13 = 5,212,350
22 × 36 × 52 × 7 × 11 = 5,613,300
35 × 52 × 7 × 11 × 13 = 6,081,075
22 × 36 × 52 × 7 × 13 = 6,633,900
2 × 36 × 5 × 7 × 11 × 13 = 7,297,290
22 × 34 × 52 × 7 × 11 × 13 = 8,108,100
22 × 36 × 52 × 11 × 13 = 10,424,700
2 × 35 × 52 × 7 × 11 × 13 = 12,162,150
22 × 36 × 5 × 7 × 11 × 13 = 14,594,580
36 × 52 × 7 × 11 × 13 = 18,243,225
22 × 35 × 52 × 7 × 11 × 13 = 24,324,300
2 × 36 × 52 × 7 × 11 × 13 = 36,486,450
22 × 36 × 52 × 7 × 11 × 13 = 72,972,900

The final answer:
(scroll down)

72,972,900 has 504 factors (divisors):
1; 2; 3; 4; 5; 6; 7; 9; 10; 11; 12; 13; 14; 15; 18; 20; 21; 22; 25; 26; 27; 28; 30; 33; 35; 36; 39; 42; 44; 45; 50; 52; 54; 55; 60; 63; 65; 66; 70; 75; 77; 78; 81; 84; 90; 91; 99; 100; 105; 108; 110; 117; 126; 130; 132; 135; 140; 143; 150; 154; 156; 162; 165; 175; 180; 182; 189; 195; 198; 210; 220; 225; 231; 234; 243; 252; 260; 270; 273; 275; 286; 297; 300; 308; 315; 324; 325; 330; 350; 351; 364; 378; 385; 390; 396; 405; 420; 429; 450; 455; 462; 468; 486; 495; 525; 540; 546; 550; 567; 572; 585; 594; 630; 650; 660; 675; 693; 700; 702; 715; 729; 756; 770; 780; 810; 819; 825; 858; 891; 900; 910; 924; 945; 972; 975; 990; 1,001; 1,050; 1,053; 1,092; 1,100; 1,134; 1,155; 1,170; 1,188; 1,215; 1,260; 1,287; 1,300; 1,350; 1,365; 1,386; 1,404; 1,430; 1,458; 1,485; 1,540; 1,575; 1,620; 1,638; 1,650; 1,701; 1,716; 1,755; 1,782; 1,820; 1,890; 1,925; 1,950; 1,980; 2,002; 2,025; 2,079; 2,100; 2,106; 2,145; 2,268; 2,275; 2,310; 2,340; 2,430; 2,457; 2,475; 2,574; 2,673; 2,700; 2,730; 2,772; 2,835; 2,860; 2,916; 2,925; 2,970; 3,003; 3,150; 3,159; 3,276; 3,300; 3,402; 3,465; 3,510; 3,564; 3,575; 3,645; 3,780; 3,850; 3,861; 3,900; 4,004; 4,050; 4,095; 4,158; 4,212; 4,290; 4,455; 4,550; 4,620; 4,725; 4,860; 4,914; 4,950; 5,005; 5,103; 5,148; 5,265; 5,346; 5,460; 5,670; 5,775; 5,850; 5,940; 6,006; 6,075; 6,237; 6,300; 6,318; 6,435; 6,804; 6,825; 6,930; 7,020; 7,150; 7,290; 7,371; 7,425; 7,700; 7,722; 8,019; 8,100; 8,190; 8,316; 8,505; 8,580; 8,775; 8,910; 9,009; 9,100; 9,450; 9,477; 9,828; 9,900; 10,010; 10,206; 10,395; 10,530; 10,692; 10,725; 11,340; 11,550; 11,583; 11,700; 12,012; 12,150; 12,285; 12,474; 12,636; 12,870; 13,365; 13,650; 13,860; 14,175; 14,300; 14,580; 14,742; 14,850; 15,015; 15,444; 15,795; 16,038; 16,380; 17,010; 17,325; 17,550; 17,820; 18,018; 18,225; 18,711; 18,900; 18,954; 19,305; 20,020; 20,412; 20,475; 20,790; 21,060; 21,450; 22,113; 22,275; 23,100; 23,166; 24,300; 24,570; 24,948; 25,025; 25,515; 25,740; 26,325; 26,730; 27,027; 27,300; 28,350; 29,484; 29,700; 30,030; 31,185; 31,590; 32,076; 32,175; 34,020; 34,650; 34,749; 35,100; 36,036; 36,450; 36,855; 37,422; 37,908; 38,610; 40,095; 40,950; 41,580; 42,525; 42,900; 44,226; 44,550; 45,045; 46,332; 47,385; 49,140; 50,050; 51,030; 51,975; 52,650; 53,460; 54,054; 56,133; 56,700; 57,915; 60,060; 61,425; 62,370; 63,180; 64,350; 66,339; 66,825; 69,300; 69,498; 72,900; 73,710; 74,844; 75,075; 77,220; 78,975; 80,190; 81,081; 81,900; 85,050; 88,452; 89,100; 90,090; 93,555; 94,770; 96,525; 100,100; 102,060; 103,950; 104,247; 105,300; 108,108; 110,565; 112,266; 115,830; 122,850; 124,740; 127,575; 128,700; 132,678; 133,650; 135,135; 138,996; 147,420; 150,150; 155,925; 157,950; 160,380; 162,162; 170,100; 173,745; 180,180; 184,275; 187,110; 189,540; 193,050; 200,475; 207,900; 208,494; 221,130; 224,532; 225,225; 231,660; 236,925; 243,243; 245,700; 255,150; 265,356; 267,300; 270,270; 280,665; 289,575; 300,300; 311,850; 315,900; 324,324; 331,695; 347,490; 368,550; 374,220; 386,100; 400,950; 405,405; 416,988; 442,260; 450,450; 467,775; 473,850; 486,486; 510,300; 521,235; 540,540; 552,825; 561,330; 579,150; 623,700; 663,390; 675,675; 694,980; 729,729; 737,100; 801,900; 810,810; 868,725; 900,900; 935,550; 947,700; 972,972; 1,042,470; 1,105,650; 1,122,660; 1,158,300; 1,216,215; 1,326,780; 1,351,350; 1,403,325; 1,459,458; 1,621,620; 1,658,475; 1,737,450; 1,871,100; 2,027,025; 2,084,940; 2,211,300; 2,432,430; 2,606,175; 2,702,700; 2,806,650; 2,918,916; 3,316,950; 3,474,900; 3,648,645; 4,054,050; 4,864,860; 5,212,350; 5,613,300; 6,081,075; 6,633,900; 7,297,290; 8,108,100; 10,424,700; 12,162,150; 14,594,580; 18,243,225; 24,324,300; 36,486,450 and 72,972,900
out of which 6 prime factors: 2; 3; 5; 7; 11 and 13
72,972,900 and 1 are sometimes called improper factors, the others are called proper factors (proper divisors).

A quick way to find the factors (the divisors) of a number is to break it down into prime factors.


Then multiply the prime factors and their exponents, if any, in all their different combinations.


Factors (divisors), common factors (common divisors), the greatest common factor, GCF (also called the greatest common divisor, GCD, or the highest common factor, HCF)

  • If the number "t" is a factor (divisor) of the number "a" then in the prime factorization of "t" we will only encounter prime factors that also occur in the prime factorization of "a".
  • If there are exponents involved, the maximum value of an exponent for any base of a power that is found in the prime factorization of "t" (powers, or multiplicities) is at most equal to the exponent of the same base that is involved in the prime factorization of "a".
  • Hint: 23 = 2 × 2 × 2 = 8. 2 is called the base and 3 is the exponent. 23 is the power and 8 is the value of the power. We sometimes say that the number 2 is raised to the power of 3.
  • For example, 12 is a factor (divisor) of 120 - the remainder is zero when dividing 120 by 12.
  • Let's look at the prime factorization of both numbers and notice the bases and the exponents that occur in the prime factorization of both numbers:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contains all the prime factors of 12, and all its bases' exponents are higher than those of 12.
  • If "t" is a common factor (divisor) of "a" and "b", then the prime factorization of "t" contains only the common prime factors involved in the prime factorizations of both "a" and "b".
  • If there are exponents involved, the maximum value of an exponent for any base of a power that is found in the prime factorization of "t" is at most equal to the minimum of the exponents of the same base that is involved in the prime factorization of both "a" and "b".
  • For example, 12 is the common factor of 48 and 360.
  • The remainder is zero when dividing either 48 or 360 by 12.
  • Here there are the prime factorizations of the three numbers, 12, 48 and 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Please note that 48 and 360 have more factors (divisors): 2, 3, 4, 6, 8, 12, 24. Among them, 24 is the greatest common factor, GCF (or the greatest common divisor, GCD, or the highest common factor, HCF) of 48 and 360.
  • The greatest common factor, GCF, of two numbers, "a" and "b", is the product of all the common prime factors involved in the prime factorizations of both "a" and "b", taken by the lowest exponents.
  • Based on this rule it is calculated the greatest common factor, GCF, (or the greatest common divisor GCD, HCF) of several numbers, as shown in the example below...
  • GCF, GCD (1,260; 3,024; 5,544) = ?
  • 1,260 = 22 × 32
  • 3,024 = 24 × 32 × 7
  • 5,544 = 23 × 32 × 7 × 11
  • The common prime factors are:
  • 2 - its lowest exponent (multiplicity) is: min.(2; 3; 4) = 2
  • 3 - its lowest exponent (multiplicity) is: min.(2; 2; 2) = 2
  • GCF, GCD (1,260; 3,024; 5,544) = 22 × 32 = 252
  • Coprime numbers:
  • If two numbers "a" and "b" have no other common factors (divisors) than 1, gfc, gcd, hcf (a; b) = 1, then the numbers "a" and "b" are called coprime (or relatively prime).
  • Factors of the GCF
  • If "a" and "b" are not coprime, then every common factor (divisor) of "a" and "b" is a also a factor (divisor) of the greatest common factor, GCF (greatest common divisor, GCD, highest common factor, HCF) of "a" and "b".