Given the Number 1,326,780 Calculate (Find) All Its Factors (Divisors – the Proper, the Improper and the Prime Factors). Online Calculator

All the factors (divisors) of the number 1,326,780

1. Carry out the prime factorization of the number 1,326,780:

The prime factorization of a number: finding the prime numbers that multiply together to make that number.


1,326,780 = 22 × 36 × 5 × 7 × 13
1,326,780 is not a prime number but a composite one.


* Prime number: a natural number that is divisible (divided evenly) only by 1 and itself. A prime number has exactly two factors: 1 and the number itself.
* Composite number: a natural number that has at least one other factor than 1 and itself.


2. Multiply the prime factors of the number 1,326,780

Multiply the prime factors involved in the prime factorization of the number in all their unique combinations, that give different results.


Also consider the exponents of these prime factors.

Also add 1 to the list of factors (divisors). All the numbers are divisible by 1.


All the factors (divisors) are listed below - in ascending order

The list of factors (divisors):

neither prime nor composite = 1
prime factor = 2
prime factor = 3
22 = 4
prime factor = 5
2 × 3 = 6
prime factor = 7
32 = 9
2 × 5 = 10
22 × 3 = 12
prime factor = 13
2 × 7 = 14
3 × 5 = 15
2 × 32 = 18
22 × 5 = 20
3 × 7 = 21
2 × 13 = 26
33 = 27
22 × 7 = 28
2 × 3 × 5 = 30
5 × 7 = 35
22 × 32 = 36
3 × 13 = 39
2 × 3 × 7 = 42
32 × 5 = 45
22 × 13 = 52
2 × 33 = 54
22 × 3 × 5 = 60
32 × 7 = 63
5 × 13 = 65
2 × 5 × 7 = 70
2 × 3 × 13 = 78
34 = 81
22 × 3 × 7 = 84
2 × 32 × 5 = 90
7 × 13 = 91
3 × 5 × 7 = 105
22 × 33 = 108
32 × 13 = 117
2 × 32 × 7 = 126
2 × 5 × 13 = 130
33 × 5 = 135
22 × 5 × 7 = 140
22 × 3 × 13 = 156
2 × 34 = 162
22 × 32 × 5 = 180
2 × 7 × 13 = 182
33 × 7 = 189
3 × 5 × 13 = 195
2 × 3 × 5 × 7 = 210
2 × 32 × 13 = 234
35 = 243
22 × 32 × 7 = 252
22 × 5 × 13 = 260
2 × 33 × 5 = 270
3 × 7 × 13 = 273
32 × 5 × 7 = 315
22 × 34 = 324
33 × 13 = 351
22 × 7 × 13 = 364
2 × 33 × 7 = 378
2 × 3 × 5 × 13 = 390
34 × 5 = 405
22 × 3 × 5 × 7 = 420
5 × 7 × 13 = 455
22 × 32 × 13 = 468
2 × 35 = 486
22 × 33 × 5 = 540
2 × 3 × 7 × 13 = 546
34 × 7 = 567
32 × 5 × 13 = 585
2 × 32 × 5 × 7 = 630
2 × 33 × 13 = 702
36 = 729
22 × 33 × 7 = 756
22 × 3 × 5 × 13 = 780
2 × 34 × 5 = 810
32 × 7 × 13 = 819
2 × 5 × 7 × 13 = 910
33 × 5 × 7 = 945
22 × 35 = 972
34 × 13 = 1,053
22 × 3 × 7 × 13 = 1,092
2 × 34 × 7 = 1,134
This list continues below...

... This list continues from above
2 × 32 × 5 × 13 = 1,170
35 × 5 = 1,215
22 × 32 × 5 × 7 = 1,260
3 × 5 × 7 × 13 = 1,365
22 × 33 × 13 = 1,404
2 × 36 = 1,458
22 × 34 × 5 = 1,620
2 × 32 × 7 × 13 = 1,638
35 × 7 = 1,701
33 × 5 × 13 = 1,755
22 × 5 × 7 × 13 = 1,820
2 × 33 × 5 × 7 = 1,890
2 × 34 × 13 = 2,106
22 × 34 × 7 = 2,268
22 × 32 × 5 × 13 = 2,340
2 × 35 × 5 = 2,430
33 × 7 × 13 = 2,457
2 × 3 × 5 × 7 × 13 = 2,730
34 × 5 × 7 = 2,835
22 × 36 = 2,916
35 × 13 = 3,159
22 × 32 × 7 × 13 = 3,276
2 × 35 × 7 = 3,402
2 × 33 × 5 × 13 = 3,510
36 × 5 = 3,645
22 × 33 × 5 × 7 = 3,780
32 × 5 × 7 × 13 = 4,095
22 × 34 × 13 = 4,212
22 × 35 × 5 = 4,860
2 × 33 × 7 × 13 = 4,914
36 × 7 = 5,103
34 × 5 × 13 = 5,265
22 × 3 × 5 × 7 × 13 = 5,460
2 × 34 × 5 × 7 = 5,670
2 × 35 × 13 = 6,318
22 × 35 × 7 = 6,804
22 × 33 × 5 × 13 = 7,020
2 × 36 × 5 = 7,290
34 × 7 × 13 = 7,371
2 × 32 × 5 × 7 × 13 = 8,190
35 × 5 × 7 = 8,505
36 × 13 = 9,477
22 × 33 × 7 × 13 = 9,828
2 × 36 × 7 = 10,206
2 × 34 × 5 × 13 = 10,530
22 × 34 × 5 × 7 = 11,340
33 × 5 × 7 × 13 = 12,285
22 × 35 × 13 = 12,636
22 × 36 × 5 = 14,580
2 × 34 × 7 × 13 = 14,742
35 × 5 × 13 = 15,795
22 × 32 × 5 × 7 × 13 = 16,380
2 × 35 × 5 × 7 = 17,010
2 × 36 × 13 = 18,954
22 × 36 × 7 = 20,412
22 × 34 × 5 × 13 = 21,060
35 × 7 × 13 = 22,113
2 × 33 × 5 × 7 × 13 = 24,570
36 × 5 × 7 = 25,515
22 × 34 × 7 × 13 = 29,484
2 × 35 × 5 × 13 = 31,590
22 × 35 × 5 × 7 = 34,020
34 × 5 × 7 × 13 = 36,855
22 × 36 × 13 = 37,908
2 × 35 × 7 × 13 = 44,226
36 × 5 × 13 = 47,385
22 × 33 × 5 × 7 × 13 = 49,140
2 × 36 × 5 × 7 = 51,030
22 × 35 × 5 × 13 = 63,180
36 × 7 × 13 = 66,339
2 × 34 × 5 × 7 × 13 = 73,710
22 × 35 × 7 × 13 = 88,452
2 × 36 × 5 × 13 = 94,770
22 × 36 × 5 × 7 = 102,060
35 × 5 × 7 × 13 = 110,565
2 × 36 × 7 × 13 = 132,678
22 × 34 × 5 × 7 × 13 = 147,420
22 × 36 × 5 × 13 = 189,540
2 × 35 × 5 × 7 × 13 = 221,130
22 × 36 × 7 × 13 = 265,356
36 × 5 × 7 × 13 = 331,695
22 × 35 × 5 × 7 × 13 = 442,260
2 × 36 × 5 × 7 × 13 = 663,390
22 × 36 × 5 × 7 × 13 = 1,326,780

The final answer:
(scroll down)

1,326,780 has 168 factors (divisors):
1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 13; 14; 15; 18; 20; 21; 26; 27; 28; 30; 35; 36; 39; 42; 45; 52; 54; 60; 63; 65; 70; 78; 81; 84; 90; 91; 105; 108; 117; 126; 130; 135; 140; 156; 162; 180; 182; 189; 195; 210; 234; 243; 252; 260; 270; 273; 315; 324; 351; 364; 378; 390; 405; 420; 455; 468; 486; 540; 546; 567; 585; 630; 702; 729; 756; 780; 810; 819; 910; 945; 972; 1,053; 1,092; 1,134; 1,170; 1,215; 1,260; 1,365; 1,404; 1,458; 1,620; 1,638; 1,701; 1,755; 1,820; 1,890; 2,106; 2,268; 2,340; 2,430; 2,457; 2,730; 2,835; 2,916; 3,159; 3,276; 3,402; 3,510; 3,645; 3,780; 4,095; 4,212; 4,860; 4,914; 5,103; 5,265; 5,460; 5,670; 6,318; 6,804; 7,020; 7,290; 7,371; 8,190; 8,505; 9,477; 9,828; 10,206; 10,530; 11,340; 12,285; 12,636; 14,580; 14,742; 15,795; 16,380; 17,010; 18,954; 20,412; 21,060; 22,113; 24,570; 25,515; 29,484; 31,590; 34,020; 36,855; 37,908; 44,226; 47,385; 49,140; 51,030; 63,180; 66,339; 73,710; 88,452; 94,770; 102,060; 110,565; 132,678; 147,420; 189,540; 221,130; 265,356; 331,695; 442,260; 663,390 and 1,326,780
out of which 5 prime factors: 2; 3; 5; 7 and 13
1,326,780 and 1 are sometimes called improper factors, the others are called proper factors (proper divisors).

A quick way to find the factors (the divisors) of a number is to break it down into prime factors.


Then multiply the prime factors and their exponents, if any, in all their different combinations.


Factors (divisors), common factors (common divisors), the greatest common factor, GCF (also called the greatest common divisor, GCD, or the highest common factor, HCF)

  • If the number "t" is a factor (divisor) of the number "a" then in the prime factorization of "t" we will only encounter prime factors that also occur in the prime factorization of "a".
  • If there are exponents involved, the maximum value of an exponent for any base of a power that is found in the prime factorization of "t" (powers, or multiplicities) is at most equal to the exponent of the same base that is involved in the prime factorization of "a".
  • Hint: 23 = 2 × 2 × 2 = 8. 2 is called the base and 3 is the exponent. 23 is the power and 8 is the value of the power. We sometimes say that the number 2 is raised to the power of 3.
  • For example, 12 is a factor (divisor) of 120 - the remainder is zero when dividing 120 by 12.
  • Let's look at the prime factorization of both numbers and notice the bases and the exponents that occur in the prime factorization of both numbers:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contains all the prime factors of 12, and all its bases' exponents are higher than those of 12.
  • If "t" is a common factor (divisor) of "a" and "b", then the prime factorization of "t" contains only the common prime factors involved in the prime factorizations of both "a" and "b".
  • If there are exponents involved, the maximum value of an exponent for any base of a power that is found in the prime factorization of "t" is at most equal to the minimum of the exponents of the same base that is involved in the prime factorization of both "a" and "b".
  • For example, 12 is the common factor of 48 and 360.
  • The remainder is zero when dividing either 48 or 360 by 12.
  • Here there are the prime factorizations of the three numbers, 12, 48 and 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Please note that 48 and 360 have more factors (divisors): 2, 3, 4, 6, 8, 12, 24. Among them, 24 is the greatest common factor, GCF (or the greatest common divisor, GCD, or the highest common factor, HCF) of 48 and 360.
  • The greatest common factor, GCF, of two numbers, "a" and "b", is the product of all the common prime factors involved in the prime factorizations of both "a" and "b", taken by the lowest exponents.
  • Based on this rule it is calculated the greatest common factor, GCF, (or the greatest common divisor GCD, HCF) of several numbers, as shown in the example below...
  • GCF, GCD (1,260; 3,024; 5,544) = ?
  • 1,260 = 22 × 32
  • 3,024 = 24 × 32 × 7
  • 5,544 = 23 × 32 × 7 × 11
  • The common prime factors are:
  • 2 - its lowest exponent (multiplicity) is: min.(2; 3; 4) = 2
  • 3 - its lowest exponent (multiplicity) is: min.(2; 2; 2) = 2
  • GCF, GCD (1,260; 3,024; 5,544) = 22 × 32 = 252
  • Coprime numbers:
  • If two numbers "a" and "b" have no other common factors (divisors) than 1, gfc, gcd, hcf (a; b) = 1, then the numbers "a" and "b" are called coprime (or relatively prime).
  • Factors of the GCF
  • If "a" and "b" are not coprime, then every common factor (divisor) of "a" and "b" is a also a factor (divisor) of the greatest common factor, GCF (greatest common divisor, GCD, highest common factor, HCF) of "a" and "b".