# Are the two numbers 120 and 360 coprime (relatively prime, prime to each other)? Check if their greatest common factor, gcf, is equal to 1

## The latest pairs of numbers that have been checked on whether they are coprime (prime to each other, relatively prime) or not

 Are 120 and 360 coprime numbers (relatively prime)? May 24 22:21 UTC (GMT) Are 120 and 2,272 coprime numbers (relatively prime)? May 24 22:21 UTC (GMT) Are 66 and 2,751 coprime numbers (relatively prime)? May 24 22:21 UTC (GMT) Are 2,261 and 3,042 coprime numbers (relatively prime)? May 24 22:21 UTC (GMT) Are 2,247 and 7,392 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 156 and 1,039 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 3,838 and 25 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 48 and 2,205 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 6,296 and 7,918 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 1,988 and 6,964 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 3,122 and 9,740 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 6,790 and 200 coprime numbers (relatively prime)? May 24 22:20 UTC (GMT) Are 5 and 16 coprime numbers (relatively prime)? May 24 22:19 UTC (GMT) All the pairs of numbers that were checked on whether they are coprime (prime to each other, relatively prime) or not

## Coprime numbers (also called: numbers prime to each other, relatively prime, mutually prime)

• The number "a" and "b" are said to be relatively prime, mutually prime, or coprime if the only positive integer that evenly divides both of them is 1.
• The coprime numbers are pairs of (at least two) numbers that do not have any other common factor than 1.
• When the only common factor is 1, then this is also equivalent to their greatest (highest) common factor (divisor) being 1.
• Examples of pairs of coprime numbers:
• The coprime numbers are not necesarily prime numbers themselves, for example 4 and 9 - these two numbers are not prime, they are composite numbers, since 4 = 2 × 2 = 22 and 9 = 3 × 3 = 32. But the gcf (4, 9) = 1, so they are coprime, or prime to each other, or relatively prime.
• Sometimes, the coprime numbers in a pair are prime numbers themselves, for example (3 and 5), or (7 and 11), (13 and 23).
• Some other times, the numbers that are prime to each other may or may not be prime, for example (5 and 6), (7 and 12), (15 and 23).
• Examples of pairs of numbers that are not coprime:
• 16 and 24 are not coprime, since they are both divisible by 1, 2, 4 and 8 (1, 2, 4 and 8 are their common factors).
• 6 and 10 are not coprime, since they are both divisible by 1 and 2.
• Some properties of the coprime numbers:
• The greatest (highest) common factor (divisor) of two coprime numbers is always 1.
• The least common multiple, LCM, of two coprimes is always their product: LCM (a, b) = a × b.
• The numbers 1 and -1 are the only integers coprime to every integer, for example (1 and 2), (1 and 3), (1 and 4), (1 and 5), (1 and 6), and so on, are pairs of coprime numbers since their greatest (highest) common factor (divisor) is 1.
• The numbers 1 and -1 are the only integers coprime to 0.
• Any two prime numbers are always coprime, for example (2 and 3), (3 and 5), (5 and 7) and so on.
• Any two consecutive numbers are co-prime, for example (1 and 2), (2 and 3), (3 and 4), (4 and 5), (5 and 6), (6 and 7), (7 and 8), (8 and 9), (9 and 10), and so on.
• The sum of two coprime numbers, a + b, is always relatively prime to their product, a × b. For example, 7 and 10 are coprime numbers, 7 + 10 = 17 is relatively prime to 7 × 10 = 70. Another example, 9 and 11 are coprime, and their sum, 9 + 11 = 20 is relatively prime to their product, 9 × 11 = 99.
• A quick way to determine whether two numbers are prime to each other is given by the Euclidean algorithm: The Euclidean Algorithm