^{14}/_{24}=^{(14 ÷ 2)}/_{(24 ÷ 2)}=^{ 7}/_{12 }^{50}/_{75}=^{(50 ÷ 25)}/_{(75 ÷ 25)}=^{ 2}/_{3 }^{11}/_{15}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{12}/_{32}=^{(12 ÷ 4)}/_{(32 ÷ 4)}=^{ 3}/_{8 }^{8}/_{36}=^{(8 ÷ 4)}/_{(36 ÷ 4)}=^{ 2}/_{9 }^{14}/_{28}=^{(14 ÷ 14)}/_{(28 ÷ 14)}=^{ 1}/_{2 }^{7}/_{3}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

7 > 3 => improper fraction

Rewrite:

7 ÷ 3 = 2 and remainder = 1 =>

^{7}/_{3}=^{(2 × 3 + 1)}/_{3}= 2 +^{1}/_{3}=

= 2^{1}/_{3}, mixed number (mixed fraction)^{12}/_{48}=^{(12 ÷ 12)}/_{(48 ÷ 12)}=^{ 1}/_{4 }^{5}/_{7}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{13}/_{20}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{13}/_{12}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

13 > 12 => improper fraction

Rewrite:

13 ÷ 12 = 1 and remainder = 1 =>

^{13}/_{12}=^{(1 × 12 + 1)}/_{12}= 1 +^{1}/_{12}=

= 1^{1}/_{12}, mixed number (mixed fraction)^{15}/_{9}=^{(15 ÷ 3)}/_{(9 ÷ 3)}=^{5}/_{3};

5 > 3 => improper fraction

Rewrite:

5 ÷ 3 = 1 and remainder = 2 =>

^{5}/_{3}=^{(1 × 3 + 2)}/_{3}= 1 +^{2}/_{3}=

= 1^{2}/_{3}, mixed number (mixed fraction)^{17}/_{51}=^{(17 ÷ 17)}/_{(51 ÷ 17)}=^{ 1}/_{3 }^{18}/_{25}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{5}/_{30}=^{(5 ÷ 5)}/_{(30 ÷ 5)}=^{ 1}/_{6 }^{11}/_{10}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

11 > 10 => improper fraction

Rewrite:

11 ÷ 10 = 1 and remainder = 1 =>

^{11}/_{10}=^{(1 × 10 + 1)}/_{10}= 1 +^{1}/_{10}=

= 1^{1}/_{10}, mixed number (mixed fraction)^{5}/_{24}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{30}/_{36}=^{(30 ÷ 6)}/_{(36 ÷ 6)}=^{ 5}/_{6 }^{9}/_{5}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

9 > 5 => improper fraction

Rewrite:

9 ÷ 5 = 1 and remainder = 4 =>

^{9}/_{5}=^{(1 × 5 + 4)}/_{5}= 1 +^{4}/_{5}=

= 1^{4}/_{5}, mixed number (mixed fraction)^{6}/_{7}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{52}/_{65}=^{(52 ÷ 13)}/_{(65 ÷ 13)}=^{ 4}/_{5 }^{10}/_{35}=^{(10 ÷ 5)}/_{(35 ÷ 5)}=^{ 2}/_{7 }^{2,048}/_{960}=^{(2,048 ÷ 64)}/_{(960 ÷ 64)}=^{32}/_{15};

32 > 15 => improper fraction

Rewrite:

32 ÷ 15 = 2 and remainder = 2 =>

^{32}/_{15}=^{(2 × 15 + 2)}/_{15}= 2 +^{2}/_{15}=

= 2^{2}/_{15}, mixed number (mixed fraction)^{2}/_{16}=^{(2 ÷ 2)}/_{(16 ÷ 2)}=^{ 1}/_{8 }^{20}/_{32}=^{(20 ÷ 4)}/_{(32 ÷ 4)}=^{ 5}/_{8 }^{10}/_{14}=^{(10 ÷ 2)}/_{(14 ÷ 2)}=^{ 5}/_{7 }^{18}/_{32}=^{(18 ÷ 2)}/_{(32 ÷ 2)}=^{ 9}/_{16 }^{15}/_{6}=^{(15 ÷ 3)}/_{(6 ÷ 3)}=^{5}/_{2};

5 > 2 => improper fraction

Rewrite:

5 ÷ 2 = 2 and remainder = 1 =>

^{5}/_{2}=^{(2 × 2 + 1)}/_{2}= 2 +^{1}/_{2}=

= 2^{1}/_{2}, mixed number (mixed fraction)^{16}/_{3}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

16 > 3 => improper fraction

Rewrite:

16 ÷ 3 = 5 and remainder = 1 =>

^{16}/_{3}=^{(5 × 3 + 1)}/_{3}= 5 +^{1}/_{3}=

= 5^{1}/_{3}, mixed number (mixed fraction)^{8}/_{5}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

8 > 5 => improper fraction

Rewrite:

8 ÷ 5 = 1 and remainder = 3 =>

^{8}/_{5}=^{(1 × 5 + 3)}/_{5}= 1 +^{3}/_{5}=

= 1^{3}/_{5}, mixed number (mixed fraction)^{6}/_{5}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

6 > 5 => improper fraction

Rewrite:

6 ÷ 5 = 1 and remainder = 1 =>

^{6}/_{5}=^{(1 × 5 + 1)}/_{5}= 1 +^{1}/_{5}=

= 1^{1}/_{5}, mixed number (mixed fraction)^{21}/_{36}=^{(21 ÷ 3)}/_{(36 ÷ 3)}=^{ 7}/_{12 }^{16}/_{48}=^{(16 ÷ 16)}/_{(48 ÷ 16)}=^{ 1}/_{3 }^{16}/_{12}=^{(16 ÷ 4)}/_{(12 ÷ 4)}=^{4}/_{3};

4 > 3 => improper fraction

Rewrite:

4 ÷ 3 = 1 and remainder = 1 =>

^{4}/_{3}=^{(1 × 3 + 1)}/_{3}= 1 +^{1}/_{3}=

= 1^{1}/_{3}, mixed number (mixed fraction)^{70}/_{100}=^{(70 ÷ 10)}/_{(100 ÷ 10)}=^{ 7}/_{10 }^{22}/_{33}=^{(22 ÷ 11)}/_{(33 ÷ 11)}=^{ 2}/_{3 }^{25}/_{75}=^{(25 ÷ 25)}/_{(75 ÷ 25)}=^{ 1}/_{3 }^{60}/_{84}=^{(60 ÷ 12)}/_{(84 ÷ 12)}=^{ 5}/_{7 }^{12}/_{21}=^{(12 ÷ 3)}/_{(21 ÷ 3)}=^{ 4}/_{7 }^{7}/_{4}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

7 > 4 => improper fraction

Rewrite:

7 ÷ 4 = 1 and remainder = 3 =>

^{7}/_{4}=^{(1 × 4 + 3)}/_{4}= 1 +^{3}/_{4}=

= 1^{3}/_{4}, mixed number (mixed fraction)^{35}/_{50}=^{(35 ÷ 5)}/_{(50 ÷ 5)}=^{ 7}/_{10 }^{9}/_{2}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers

9 > 2 => improper fraction

Rewrite:

9 ÷ 2 = 4 and remainder = 1 =>

^{9}/_{2}=^{(4 × 2 + 1)}/_{2}= 4 +^{1}/_{2}=

= 4^{1}/_{2}, mixed number (mixed fraction)^{4}/_{25}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{6}/_{35}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{9}/_{21}=^{(9 ÷ 3)}/_{(21 ÷ 3)}=^{ 3}/_{7 }^{11}/_{20}is already reduced (simplified) to lowest terms, numerator and denominator are coprime numbers^{26}/_{65}=^{(26 ÷ 13)}/_{(65 ÷ 13)}=^{ 2}/_{5 }^{2}/_{24}=^{(2 ÷ 2)}/_{(24 ÷ 2)}=^{ 1}/_{12 }^{16}/_{64}=^{(16 ÷ 16)}/_{(64 ÷ 16)}=^{ 1}/_{4 }^{4}/_{18}=^{(4 ÷ 2)}/_{(18 ÷ 2)}=^{ 2}/_{9 }